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Abstract

We theoretically derive and numerically simulate a
new phenomenon called self-supervision, in which
the higher layers of a multilayer wupervied
network control the optimisation of the lower layers.
even when there is no external supervising teacher
present. Self-supervision is a very convenient hybrid,
which comnbines the best properties of unsupervised
and supervised network training algorithms.
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1. uInrodectlm

A cotno critcssm at unsupevisd I&P@C W % ~~s *t PO W P~fnlmit 0
claIWIPW networks (Lt. supervised aerwaW). In I the ino-Ca3il leaus vWW

. I "an C LVQ) m, 11 , *a isivaiced in wbach an external teacher supiervisedl the
ouiput of a voto quanitw (VQ). sa nsrd is anud a desird Mopst OWtPu This is a
hybrid apV; ch , - " both wmsuprvisad and superviud elents 10 its SWItIALA
allothfli, and is has ait wit housed suces because di aity of a VQ antailor

1; - ticined class bounarwies is rather bmW4d Basically, a VQ is a 44& K staereork
wish very hanud capeblaites we suit ane a amhs VQ so O&bWO the

The novel result that we prmn in thi atemorandus, is tha it is =m necssary 20
introduce an maverna sackier in order to Woace suPervam i nto an OftsuPervtoed
network. It twits out that multilayer adaptive metworks can supervise teseVC11 eWR
thoth they we trained overall as unsupervised networks For sainphay. we Study the
theory a( multistage VQ networks Ohw we developed in 12. 3. 43. n which the hIgWe
layers supply feedback signals to assist an the opoinssation of the lowe layers, although
theae is no external teacher pmeenil.
Our network is well suitd to the problem of low-level image processing. whem
information at each length wcale should be processed in the light o( contextual
information at longer length scales There am many ways of imploementing cotextual
processing. but out multistage approach to this problem distinguishes itself by scaing
well to high-dimensional problems'.
In (6. 71 we succtssfully apply our theoretical results an time series and image
compression. respectively, and in 19. 9) we solve the problem of detecting statstically
anomalous features in statistically homogeneous backgrounds. Self-surpervsion should
improve the performance of the network in these applicationts, because it extends the
sequential layer-by-layer optimisation that we used in (6. 7. 6, 910t a full global
opimnisation of the multilayer net*Wk. Furthermore. the "top-down' information
pathways that self-supervision uses we the same as these required by an LVQ-like
supervised network, which allows us easily to extend our approach to become a full
classifier network.
In Section 7 we present a simple diagrammvatic review of vector quantisation. and its
extension to 2-stage vector quantisation. In Section 3 we perform nsome numerical
simulations to demonstrate the self-supervision effiects that emnerg in a 2-stage VQ.
In the appendix we review the genrald subject of Vqs, and we derive the potpei ties of 2-
stage VQs in the limit of a large codebook size (i.e. the continuum limit). This
derivation is rather technical, but itsis the central theoretical result upon which self-
supervision depends.

1 TuuM g ip. "I"M " ia Otts Peh~ m I WAMkio W

hh mor m be smrnwld 0 so LVQ~it ijbrWIs wh wb 4M 1,mmthe as Vm=L 1itsing e W A MYQU7 f

3M "we -un -at qmudy itad a b w I ie a m& 7U is so beatidw In 68 twin we

Pep ap tde-iep rn~s i - aM s go kh MA wan Iea ,nut Oest
4Tbftm 0(bwSeitf igs byea "N.



2. Vector quantisatlon model

In the appendix we collect together some background theory on VQs. In this section we
present a diagrammatic sumnmary of this theory.

2.1. Diagrammatic Interpiretation of vector quantisatlon

In a VQ the compression and reconstruction process may be interpreted in terms of
encoding and decoding during transmission of information through a noiseless
communication channel 5, as shown in Figure 1.

Figure I1. Communication channel encoding/decoding
interpretation of vector quantisation.

There are two distinct methods of encoding that we should consider:

I . Nearest Neighbour Encoding (NN): Select the codevector that lies closest to the input
vector, in the Euclidean sense.

2. Minimum Distortion Encoding' (MD): Model the noise on the communication
channel, then select the codevector that on average produces the closest estimate of
the input vector, in the Eucliden sense.

We can use NN encoding as an approximation to MD encoding when the signal-to-noise
ratio on the channel is large 7; this approximation is exact in the limit of vanishing
channel noise.

We may generalise the simple encoder/decoder system to a set of nested VQ's. For
instance, in Figure 2 we show a two-stage VQ.

In Figure 2 we transform the components of the input pair X=(X,x 2) to yield :nt
corresponding components of the pair y:=(y,,y2), which is we then input to the nested
VQ. whose output components y'=(1 1 ,y'2) we use to reconstruct the corresponding
components of x =(',.x'). In [3, 4, 5) we present an approximate method of training the
channels x, -+ *j... l -+ x,' and X21 Y2... Y2-+ X2' independently, by modelling

them as a pair of noisy channel VQs (as in Equation 10). Although in this scheme we

Sow resls could inedbe applied wa die eptiumton of VQ, fc mmnsiato informua iuoqb Doily Commumication
chamels. bi dio is nsw die purpose of our soesd poromaw ow prnmery mativatiom for usS a VQ 1111041 isn to ealeB~
closed-foo analytic solutions, witich wee may dim me w develop our ondersemding of mom complcemed meodei. tim futme

6nLamuall 1121 we der ie ftsymepictic desity of oa ede n wat of pi meapg summel d" em anme di otio

presaipics ofEquios 3. and we find de aia independent ofilm meiglmlouemlod fessaico. mwilsmn sester 4uamauon end mild
momuotousuciy conustraintss an die ueigluboulmood funmction. lIn LuAMMll 1131 we Prentan miomml derivation of his, mak for die rector
Ventieaticon case. Wben we lie die widul of di e igwomuhood fWocim decease to we we secover a manderd VQ. wtsh cuses
$am ef die esu' o C 1eam of 'uQt sobe die sa me o miopogrnpbic ouppumgSt payde dem we use de MD Deoding
rta then tMs NN ecoding.
7CAveas. in die lieaue it is consventiona o el uauyn use NN smodm. ee disagl MD smodinl is dio cocreo procedure.
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assume (incorrectly) that the channels do not mutually interfere, we nevertheless obtain
useful results'

x

X2 x'(3

I (x2  2"

Y '(Y2

input 2 22 2 reconstruction 2

Figure 2. Two-stage vector quantisation. Two channels
x1 -' Y1 ... Y'-x 1 " and x2 -y 2 '" Y2'

" x2 ' are coupled
through a common channel (Y),Y 2) -4 Z -4 (Yl',Y2)"

We may further generalise the system in Figure 2 by creating a multi-stage structure of
nested VQ's, which we may use for time series and image compression (see [6, 7]).

2.2. Ensemble average vector quantisation

We now consider the effect of mutual channel coupling on the optimisation of a nested
VQ.

x! x

21 Y1, X"

input I reconstruction I

P(Y; Y2'1lyl'y2)

2y(x2) ' (Y X2
2 X2 22

input 2 Y2 Y2 reconstruction 2

Figure 3. Ensemble average two-stage vector quantisation.
P(Y'1,Y'21YIY 2) models the distortion due to the ensemble average

of feasible (YIY2) "
4 Z -- (YI',Y2').

gFor inalte the vey esful "anofssly deieo" tu we aqpossd m IS9 Mte mutmly on the indepedent due1 assuq pton
In fact. is would have ben imposible to obtai the vey mofd tuining times (oeef of2 ads Per k an a VAXuNsW 3100)
without the independence assumpton.
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In Figure 3 we shw* an eraeemble average teniona(o Figw 2. whov *c tear Ow~
average over reazsatons o te nested VQ Yjj) -. a -. ',4'j

The ensembe avcmp appmowh is appropnaw im nama -bee ofCOW~j
update the nested ansfcrmaion tyy.) -. a -. iY) as pon of a wk%" WA duk
Ideally, we sould opldmise the zj""j w, , a5 . 9.-

unuf'ormazios to adapt v fe changes im the . ) -1 -. i '.t-# wasfarasmam but
this is time consumng. Rathe. u is be r P s io armg ts amstonntcm to
adapt to the properties of the ens rdt o( (y,.,) -,-* a p w f,*: crmaui m. I8w
might occur.

Using te marginal PDFS P(jlyY,.Y2) aid PjY''iYji o( ti ,3l). we M. w7ite
the expresi= for the dscwaion in Figure 3 to

D = fdxdx, P(,.z,)JdyP(l.i,,,()Iip: )- 'I' (i".) 1)

We may interprt the various conmbuions to tte ex retum for D b) uwkwg tt-c tUhr
outside of the expression to the inside as follows

I. The fdx. dx2 P(lz.% 2) (...) integration averages ovar .il the pan oft mputt

channels I and 2. and P(%,.%,) sp fs the pobabdity dentr* wtlh which each psu

occurs.

2. The fdy', P(y',1y,.y.) (..) integration averges over all the posible d tmoml , c4

channel 1. due to the confluence of channel I and channel 2 in t nested VQ

3. IIx'1(y',)x,11 2 is the Euclidean distance bet-*ven the input vect~ i; and itt

reconstruction x',(y',) from the distorcd verson of channel 1

4. (0 - 2) denotes an analogous term for channel 2

In Figure 4 we represent diagrarnaucally in (y.y,-spce (and (.' ,s- cei the
various terms of Equation 1.

We represent the contours of a typical P(y,.yz). a typical P(3',,y'2! ,~l, and the pmfilew
of its two marginals P(y'1 lyjv) and P(y'21yj.y 2). These marpnals have a shape that
depends on (xx 2 ), which therefore mutually couples the contributions to the dzuor on
in Equation 2. arising from the two transformatisons a, - - y, -4 "nd
X2 -+ y " - x2'. It is both pleasing and econonical that the ensemble average nested
VQ in Figure 3 automatically deermincs the topographic neighbourhood functions for
its 11 -+ t .. y,' -- ,' and a1 -4Y2 . Y2" -- xz" transformations, thus eliminating the
need to introduce them by hand'.

In the appendix we show how to minimise D by using a minimurn distorion presmcption
in which we simutwously optimise yi(xi) and y2(x2). We stnetimes approximate this
by using a nearest neighbour prescription.

9Wa I osi t. s s a po n w tI aqiui to, uw d e VQml ifNo up" aen Had Vt opM a * r p
.caiauagad soyhf mmdd. bde- ea i h e . unS. N i u

4



9

Stephen P Lumrli. 6 December 1991

PY.. I Y

Figure 4. The marginal PDFs P(.',ty,.y2) and P(y'y,)) of the
ensemble average distorion P(Y',,y'2y,Y1 ) detcnmne t
topographic neighbourhood functions for oponriin the

11 y4, 7Y 1 -1 ' - and it -4 y2 . ' -' %,'channels

3. Numerical eperiments

In this section we present a simple numerical simulation which demonstrates some of the
benefits of self-supervision

3.1. Bask network operation

We run all of our numerical simulations using the network ucture in Figure 3. with a
4-dimensional input vector 1u(XI.:;(X1 .Xj2 .2 2 1 .1z). and with scalar outputs from the
encoders y(x) and y2(x2). Thts is the minimal network that functions as a self-
supervised VQ. In realistic applications we would expect much mort complicated
networks to be used, but they would all operate according to the principles demonstrated
by the network in Figure 3.

In Table I we tabulate the various modes of operation that we use in the numerical
simulation the we outline in Figure 5

5



Self.Supervsion

Nearest Neighbour Minimum
Encoding Distortion Encoding

Independent Channels NN/I MD/I

Correlated Channels NN/C MD/C

Table 1. Encoding and channel modes used in our numerical
simulations. NN=nearest neighbour encoding, MD--minimum
distortion encoding, I=independent channels, C=correlated
channels.

In encoding mode NN we ignore the fact that P(y'21y,,y 2) and P(y'j1y,y 2) affect the
resulting (Y,,Y 2) in Equation 18, whereas in encoding mode MD we take full account of
their influence. Note that the part of Figure 5 that is enclosed in a dashed box is the inner
loop that handles the minimum disto. ion aspect of encoding mode MD. However, when
we use encoding mode NN, we must still invoke step 3 (i.e. "compute distortion PDFs")
of the simulation, because the distortion PDFs are required by step 6.

The two channel modes I and C test the effect of switching self-supervision off and on,
respectively.

We now describe in greater detail each of the numbered boxes in Figure 5.

1. Clamp Layer 0 Inputs

Generate x=(x, 1,x 2) (x,1 ,x 12 ,x2 1,x2 ) using an appropriate random vector generating
routine. We choose (x,,,x, 2) as a uniformly distributed random vector in a disc-shaped
region, and then generate (x21,x22) by rotating (x11 ,x12) about the disc's centre by an
random angle uniformly sampled from the interval t-e,+9i.
The details of how we generate each x are as follows. We use circular random variables
in order to ensure that there is no preferential orientation. We generate (x21,x2 2) from
(x11,x1 2) in the way described in order to ensure that the marginal PDFs P(x1 1 ,x1 2) and
P(x21,x2 2) are the same. We randomly rotate within [-O,+O] in order to ensure that
(x,,,xt 2) and (x2j,x22) are not completely correlated yet not completely independent in a
way that is controlled by the size of 0. The limit 0=0 gives

P(x)=P(x11 ,x 12)6(x 2,-x, 1)5(x22-x12 ) (i.e. identically correlated), and the limit 0--n gives
P(X)=P( 11,X 12)P( 21 ,x22) (i.e. completely independent). The overall effect of this
prescription for generating inputs x is to create a training set with fixed marginal PDFs
and programmable correlations, as we require in order to demonstrate self-supervision in
a carefully controlled way.

2. Compute Nearest Neighbours

We specify the stage 0 codebooks by x'1(y )=(x'lI(y 1),x' 1 2(y1)) and

x' 2(y2)-(x' 2)(y2),x'2(y 2)), so the nearest neighbour encoding prescription yields

y(x. arg min ((x,(y) xI ) +(x, 2 (y)-x1 2 )2
Yl 

(2)
argmin , )2  (X

6
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This is a standard procedure which should need nso further explanabon For brevity.
denote the result of this operation as y~w(y.Yz1. Encoding mode NN uses yO. whereas
encoding mode MD refines yO somewhat in the ensuing steps

3. Compute Distortiont PDFs

Channel mode C. The joint dissortion PDF is P(y'ly)-P(y',.y' y,.y,). whose two
marginal PDFs P(Y',lY,,Y2) and P(Y'2ly,,Y2) specify the topographtc neaghbourhoodb of
the stage 0 codebooks.
Channel mode 1: We also use the two reduced marginal PD~s P(y,1y,) and P(y'2I)>) to
perform a control simulation in which the pair of Vqs ame gaine iapendeandy The
mode I simulation acts as a control to check that the sielf-supervision effects thai we
observe in the mode C simulation genuinely arise from the transfer of infomaton
between the pair of VQ's.
We derive P(y'lly,.y 2) (and P(y'21y,.y 2)) from P~y,.y 2) using a heurisuc procedurc %%hach
we may obtain from the following simplification of Equation 35

where we retain only those terms that depend on y',. We may interpret the terms in
Equation 3 as follows. The exponential factor determines the envelope of values of "". Cy,
that are permitted by the PDF. and the p(y',.y2) factor provides a bias that weights the
PDF in the direction of increasing code vector density If we recall that p -P"-
P12 (for our N=2 dimensional VQs), then we may replace the p factors in~ Equation 3 by
P112 factors. In our simulations we shall go one step further by approx:.-nating Equation 3
as

I t(Y,-y.) G >K

P(yI"Y1 ,Y2 )= (rt(y;-y 1 )+ t(y - y,))I2 IGI!S K (4)

~1t(y - y") G

where GeaP(y,,y2p/ay,. We display z typical set of distortion PDFs as histograms
plotted against iAy=y',-yi in Figure 6

7
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Figure 5. Flowchart showing the main steps in simulating a 2-
stage vector quantiser, with the second stage implemented as an
ensemble average vector quantiser. The section in the dashed box
is an optional minimum distortion encoding scheme, which
refines the encoding found by the nearest neighbour scheme.
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GOC AY AY 0 AY

Figure 6. Typical approximaions so the distortion PF
P(y'ly,,y2). We use a very simple P e icnPon in Which
P(y',IyIy2) is set to one of only tdue possible PDFs secoding to
the value of the underlying gradient GwPmy,,y1 ay,. These
histograms may be applied directly to the stage 0 VQs as
topographic neighbourhood functions.

The whole of Equation 4 (and Figure 6) is specified by the values of just 3 numbers.
Each aP(y,.y2)/ay, is specified by the values of 3 numbers. We choose to define them as
follows

t(y,-y,)= Xo A~y=0 (5)
1t. AY = +1

1 0.35 0.60 0.05

2 0.30 0.60 0.10

3 0.25 0.60 0.15
4 0.20 0.60 0.20

5 0.15 0.60 0.2:

6 0.10 0.60 0.30

7 0.05 0.60 0.35

Table 2. Values of r and no that we use in 7 separate numerical
experiments. Experiment 4 uses an unbiassed distortion,
experiments 5-7 use a distortion that is biassed in the direction of
increasing PDF (see Figure 6). and experiments 1-3 ane biassed in
the opposite direction. Only experiments 5-7 have a distortion
that corresponds to the one required by theory.

9



in Table 2 we list the values of;x: and Re that we use in 7 separate numerical simulations.
We use a variety of values in order to investigate the effect of both positive and negative
biasses. i.e. biasses both in the direction of and opposite to the gradient of P(y,,y2). Note
that only a positive bias corresponds to the requirements of Equation 3. where p(y'I'y2)
biasses P(y',Iy,,y2) in the direction of positive aPlyY 2),ay1 .

We may remov the effect of self-.supervision by replacing Equation 3 by

PKy,"y1 - p(y;) exp(-X p(y,)(Y; - Y.)2 (6)

where p(yl) depends on the marginal PDF P(y1). Naturaly. we can generate the
marginal PDFs during a numerica simulation in which we use joint PDFs.
4. Compute Expected Reconstructon Error
From Equation 1 we may write the expected reconstruction error DWx for the current
input vector x as

D(x) =Jdy 'P(Y."Y3 ,Y2)((x'. (Y1 )-xll) +(X; 2(yl )-X )2) + (1*4-2) (7)

where we initialise (yi'y2) to (Y,.Yz the first time we pass through the minimum
distortion loop. We evaluate the integral over y', (and y'2) somewhat crudely as a sum
using the appropriate histograms chosen from Figure 6.
5. Adjust Encoding to Reduce Error

Now that we have calculated the expected reconstruction error D(z) for our initial guess

(y1,y2) at the correct values Of y1(X2 X12) arnd y2(X2l,X22), we must investigate how it

00

which in general will not be (y1,y2)=(y1,,y1 ) (i.e. minimumn distortion encoding is not the
same as nearest neighbour encoding). Note that for each alternative Value Of (y1.y2) that
we investigate we must repeat steps 3 and 4 in order to determine the corresponding
value of D(x). In OUr simulations we explore only the immediate neighbourhood of

0 0
(y1 ,y2) given by

y, 1.~y~i (8)
Y y2  ,Y2y±l11

This rather limnited search for the minimum distortion encoding succeeds only because
we choose to use the distortion PDFs P(y'y 1,y2) and P(Y'2l1 ,YI2) that we show in Figure
6. If the range of these distortion PDFs were greater, then we would have to consider
using a longer range search procedure.

6. Update Code Vectors

From Equation 19b we may write the code vector update prescription as

hx'k(yk)=cP(yklY 1,Iy2 )(Xk - X;(yo)) (8)

10
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where (Y,Y 2 ) is the minimum distonion encoding located in steps 3-5 above. In our
numerical simulations we use c-O. 1 throughout the optimisation; we do not gradually
reduce E to zero.

7. Clamp Layer I Inputs

Now that we have finally decided what (y,,y2 ) should be output by the encoders

(y1(xj),y2 (X2)) we may use this to clamp the inputs to layer 2.

8. Update Histogram

Layer 2 contains a (leaky) histogram representation of P(Y1 ,Y2) which we now update
according to the prescription in Equation 42, with the decay lerm implenented as
r(k)--r(k)/e after every I/(I-P) time steps. In our simulations we use a memory time of
1//I-P).100.

3.2. Splitting procedure

In [4] we presented in detail a phenomenological distortion model that we used to obtain
an efficient training procedure for topographic mappings and their application to
multistage VQ's. Alternatively, we could use the standard topographic mapping training
procedure in [12], but this is a rather inefficient algorithm. It is much more efficient to
use a splitting procedure where we perform a crude optimisation using 2 codevectors,
which we then use to initialise a more refined optimisation using 4 codevectors, and so
on. In our simulations we stop at 8 codevectors. This "coarse to fine" strategy is very
effective at rapidly producing an optimum set of codevectors.

In our numerical simulations we optimise each generation of code vectors using 50
training vectors per code vector, before splitting to produce the initial code vector
configuration in the next generation.

3.3. Experimental results

We now present the results of several numerical simulations conducted according to
procedure that we have described. We run each simulation 4 times to cover the
possibilities NN/I, NNIC, MD/I and MD/C that we show in Table 1.

In Figure 7, 8 and 9 we present the NN/I and NN/C results, and in Figure 10, I1 and 12
we present the MD/I and MD/C results. In each Figure we present two plots for channel
modes I and C. The dashed lines indicate error bar envelopes, where each point that we
plot is the average of the value of D obtained from 16 independent optmisation
simulations (in each simulation we accumulate statistics for 256 test set samples to
estimate D).

In the case of symmetric distortion (i.e. entry number 4 in Table 2) the I and C plots
produce the same value of D. This is because this type of distortion forces
P(y'Iy1 ,y2)=P(y'1Y1 ). This is a simple check of the consistency of our I and C results.

For positively biassed distortions (i.e. in accord with theory) the C plots are
systematically lower than the I plots. This behaviour demonstrates convincingly that self-
supervision produces a reduced reconstruction error, whether NN or MD encoding is
used.

I1



For negatively biassed distortions (i.e. in contradiction with theory) the C plots are
systematically higher than the I plots. Because we use an artificially incorrect distortion
it is difficult to interpret this result closely. It mearly corroborates what we might have
expected to happen when we ignore what the theory tells us to do.

When we study the effect of encoding mode, we discover that the MD plots are
systematically lower than the corresponding NN plots. This behaviour demonstrates
convincingly that a full search for the appropriate encoding is better than a partial search.
whether I or C channels are used. This is to be expected.

As the correlation between the channels is reduced (i.e. increase the input correlation
angle), the difference between the I and C plots systematically decreases, eept for
Figure 12 where we present the MD/I and MD/C plots for uncorrelated inputs. We would
expect that I and C plots should overlap in Figure 12 and in Figure 9, because there are
no correlations between the channels. However Figure 12, and to a lesser extent Figure
9, show a clear departure from this expectation. This apparent failure occurs because the
histograms suffer from Poisson statistics, so they do not record independent channel
statistics (i.e. what is recorded in the histograms does not satisfy P(y,y 2I)P(y 1 )P(y2)), so
the C simulation is affected by these spurious correlations to produce results that differ
from the I simulation.

Taken together Figures 7-12 demonstrate the consistency of our numerical simulations,
and demonstrate the benefits of self-supervision (and, coincidentally, minimum
distortion encoding) when a simple network is applied to an artificially constructed set of
data. These results corroborate the theoretical results that we presented earlier.

4. Conclusions

The main result that we present in this memorandum is the theoretical derivation of and
numerical simulation of the phenomenon of self-supervision. For illustrative purposes we
consider the problem of a pair of communication channels that cause mutual distortion.
In our numerical simulations we present a simple demonstration of the improvement in
performance that we can obtain be jointly optimising the pair of communication
channels, compared with independent optimisation.

In order to make contact with the theory of unsupervised adaptive networks we model
the communication channel problem as a nested VQ, as shown in Figure 2. The effect of
the inner VQ models the mutual channel distortion, and thus influences the way in which
the outer VQ's must be optimised. This is the phenomenon of self-supervision, where
one part of an overall unsupervised network supervises the optimisation of another part
of the network.

This principle may easily be generalised to a multilayer unsupervised network, although
we have not done so in this memorandum. This would mean that we operate an
unsupervised multilayer network in such a way that it supervises its own internal
operation by passing control signals back from higher layers to lower layers, which in
turn causes the lower layers to process their inputs more effectively.

12
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5. Recommendation

The results that we present in this memorandum suggests an interesting new dinrctim of
research into multistage LVQ networks. The LVQ approach 111 to training a classifier
network has had limited success because it uses a single mage VQ (with supervision).
Our multistage VQ network could be supervised in the same way as in the LVQ method,
and the training signals backpropagaed down through the layers of the network. At each
layer the bacipropagating signals would consist of two components: a term which
requires the code vectors to be updated (i.e. a programmable topographic neighbourhood,
as in self-supervision), plus a term which requires the layers inputs to be updated. The
first type of tem is familiar from our experience with self-supervision, whereas the
second term is new (it did not occur in our simulations because we did not experiment
with multilayer networks).

6. Notation and terminology

Single stage vector quantiser:

x = input data

y = compressed data

x'= reconstruction of the input data

y(x) = compression operation, mapping x -- y

x'(y) = reconstruction operation, mapping y -- x'

P(x) = PDF of input data

P(y) = PDF of channel data

Two-stage vector quantiser:

x, = input data (channel 1)

x2 = input data (channel 2)

Yj = compressed data (channel 1)

Y2 = compressed data (channel 2)

y', - distorted compressed data (channel 1)

Y'2 = distorted compressed data (channel 2)

i'l - reconstruction of the input data (channel I)

x'2= reconstruction of the input data (channel 2)

y,(x,) - compression operation (channel I), mapping x, -4 Yj

Y2(X2 ) - compression operation (channel 2), mapping x2 -4 y2

x',(.V') - reconstruction operation (channel I), mapping y', - x'I

x'2(y'2) - reconstruction operation (channel 2), mapping Y'2 '4 x2

Z(-1 ,y2) = compression operation (fusing channel I and channel 2)

14



Stephen P Luttrell. 6 December 1991

y'(z) - reconsruction operation (recovering channel 1)

y' 2(z) - reconstuction operation (recovering channel 2)

P(x,,x 2) -joint PDF of input data (channel I and channel 2)

P(xl) - marginal PDF of input dam (channel 1)

P(x2) - marginal PDF of input dam (channel 2)

P(y.,y 2) - joint PDF of compressed data (channel I and channel 2)

P(Y',.y' 2y1 ly 2) - conditional PDF of distorted compressed data (channel I and
channel 2)

P(Y' 11y,,y 2 ) = marginal conditional PDF of distorted compressed data (channel I)

P(v'2y1,y 2) - marginal conditional PDF of distorted compressed data (channel 2)

Note that we use the terms compress/encode (and reconsmict/decode) interchangeably.

We also use the generic notation P(.) to denote a PDF, so unless we state otherwise the
functional form of P() may be deduced from the nature of the argument that we insert
into the function.

Finally, we use the word "stage" to denote a pair of adjacent layers in a multilayer
network. Thus "stage 0" means "layers 0 and 1". We use this terminology to refer to the
transformation between layers, rather than the layers themselves.

7. Appendix

In this section we present a resun of the VQ theory of Linde et al (10] (the LBG
algorithm), and its extension to multistage VQ's [2, 3, 4, 51. These extensions are related
to the VQ theory of Kumazawa et al [ I l] for communication over a noisy channel, and
to the topographic mapping theory of Kohonen [121 for trining self-organising neural
networks' 0.

7.1. Vector quantisation

Define x as the input data, y as the compressed data, and x' as the reconstruction of the
input data. Define y(x) as the compression operation x -- y, and x'(y) as the
reconstruction operation y -+ x', which yields overall x'=x'(y(x)). Note that the
compression and reconstruction process may be interpreted in terms of encoding and
decoding during transmission of information through a noiseless communication
channel' 1, as shown in Figure 1.

We may combine these quantities to obtain the average 1.2 (i.e. Euclidean) distortion D,

'0 laied"i vQ 6mY and waapqhc 'woem dmshoy a.,ma mzadiy .qanln. low do Whey of dnzig" , I -.c1y
Ia iIs to mwp no otrn miuhimim of a Lyspanow tmsaio camo b- aomisd. hI mi l om msop *03Kaono bmM hm Ieb I Ibi dmM in *Ais wy in do firi $&m

10aro remits omhiid be aN I swi es apmimon o VQt f ammrksiahat o hfommia doug noisy amnunm
dwn.I, loss *M is sM of Gov qmre pro miivaim 1w mg a VQ madol a w obm. smplaloud-fom an. lycumaos. 'tu wma ms -t m to mup ou mm b o m emptiami maeh a * tim as
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D J dx P(x)Ix'(y(x)-x 2  (9)

The VQ whose (continuum limit) codebook is defined by the pair of functions
(y(x),x'(y)) can be optimised by minimising D, with respect to variations of y(x) and
x'(y).

7.1.1. Vector quantisation for a noisy channel

A more general form of Equation 9 that gives the average L2 distortion for a VQ with a

noisy communication channel (3, 4, 5, 11] is

D, j dx P(x)Jdy'r(y -y(x))Ix'(y')-x| (10)

In Equation 10 we assume that y'=y(x)+n, where n is a random noise variable with PDF
x(n), so P(xn)=P(x)x(n), assuming x and n am independent.

7.1.2. Nearest neighbour versus minimum distortion encoding

We functionally differentiate D2 to calculate the zeros of 8D2/Sy(x) and 8D2/8x'(y),
which yields 12 (see [3, 4, 51 for the details)

argmin
yx) = ' Jdy' 7(y'- y)jx'(y')- xj2  (11)

fdx P(x)n(y- y(x))x
x (y) -fdx P(x) n(y - y(x)) (I2a)

Ax" (y) = c t(y- y(x))(x - X,(y) (12b)

In Equation 12 there are two methods of updating x'(y).

I. Batch update (Equation 12a): This is equivalent to one cycle of the LBG algorithm
(101.

2. Continuous update (Equation 12b): This is identical to the topographic mapping
raining algorithm [121, so x(n) can be interpreted as a topographic neighbourhood
function' 3.

In Equation I I there are two distinct cases to consider.

12"m te oiuapst ol the emcodend soally a discee vaeiae dm not invmhdoe our me of" m "asad cmimmoos n aipot in out
deivwons. We w moumo dossvaaiom hmaase x is s1N to m %bm n sigw on. Athonmds. we cowest om omatrum
deivsigas o distre derivatioso by exdusgin kaegrals for suns, duivivos tle frimils thflencea. am Notse *t it is nmo in
amwu asy so mviei in l opposite direction (iA. From s d se cadlatiiono ia "=mth" aWAise cNIMlesie). ba ts does

not fec oW uMshsL
13 1hio pe o v in fbossteiamyof ieousaily lnhsg spogoaphicmapaphmrm&m
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1. Nearest Neighbour Encoding (NN): When x(n)=6(n) (i.e. the noiseless case)
Equation I I specifies a nearest neighbour encoding prescription yo(x). i.e. given x
select as y-y°(x) the y that minimises IIx'(y)-xl12.

2. Minimum Distortion Encoding (MD): When x(n)*8(n) Equation I I specifies a

minimum distortion encoding prescription y(x), wher the effect of X(n) is
anticipated when selecting y(x).

NN encoding can be used as an approximation to MD encoding when x(n)*(n). In
order to compare NN with MD encoding we develop a Taylor series expansion of the
IIx'(y')x1l2 factor in Equation 11 about its stationary point y-y°(x)

IX' y')-_,[2 = do + (y' _yo),(y,_y*)id + (y'-yo ),(y,_yo), (y, yo ), d+-.. (13)

where do, d and d are the zeroth. second and third derivatives of IIx'(y)-x1 2 at y=y(x)

do m IxpcyoC))- 4l2

de  ; ---- x'(Y) - (14)

d a3
j Xayjayk jx'(Y)-xn 2 ,, YOW

whence

D 2 (x) = fdy' it(y'-y) JIx'(y').xiI
2 

=

+ 'D 7 +i (y-yO) +( (y yO)i(y-yOiy-yO)-) d +

ij

'AX ( 'Ci r(yyO\k+2,rn.) +( ?i(y.yO)j(y..yO)k+2.) +(y-yO)j(y-yO)j(y-yO)k d + -.(15)
ij*k

where we have defined the first three moments of x(n) as

74- fdn w(n) n,

R fdn x(n) ninj (16)

3 1
Iti. a fdn (n) ninjnk

To locate the minimum distortion encoding y(x) we must minimise the expression given
by Equation 15 with respect to y.
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If we ignore the skewness matrix d;, then we can reduce the problem to manurusing
(y-ye+n1),(y-ye+nl),d,<. The Hessian matrix 4 has no negative eigenvalues. because in

Equation 13 we expanded about a local minimum of ltx'(Y)-112, so we obtain

y(x) = y0(x) -x, (17)

The solution is shifted away from the nearest neighbour encoding y9(x) by an amount
equal to minus the bias that x(n) introdues. This is intuitively reasonable because the
effect of minimum distortion encoding anticipates the distorting effect of X(n). and will
compensate for any bias that x(n) introduces.

When n1=0 it is important to retain d , because it is then the lowest order contribution to
the difference between y(x) and yO(x).

7.1.3. Mean field versus local field optimisation

The update prescription depends on the biassed marginals P(yOy 2 ) and P(y,'! 1y.).
which causes a migration of P(yt,y,) as shown in Figure 13.

The widths of the marginals P(yily,,y 2) and P(y2 lyl,y 2) determine the widths of the
vertical and horizontal bands of P(Y1,Y2) that are affected. It is these changes in P(y1 ,),)
(and hence P(y,'y,,y 2) and P(y2'lyl,y 2)) that cause the differences between the "mean
field" and "local field" optimisation procedures.

Strictly speaking, the change to P(Y1 Y2) is not restricted entirely to the vicinity of the
two regions indicated in Figure 13. For instance, the movement of the code vectors in
the topographic neighbourhood of y1(X) and Y2(x) can change the shape of the
quantisation cells of other code vectors, which, in turn, causes other changes to P(y l.Y2 ).
However, this is a second order effect.

We see from Figure 13 that the net migration averaged over all inputs has the affect of
squeezing the P(y,,y 2) distribution. This inward pressure is counterbalanced by the
stretching tendency of each marginal P(yl) and P(Y2) to become approximately uniform,
as normally occurs in VQ's' 4.

When we perform a "mean field" simulation we do not take account of these changes to
P(Y1 ,Y2 ) (and hence P(yllyl,y2) and P(y2'lyl,y 2)) when we calculate the gradient of D in
Equation 1. However, in our simulations we represent P(Yl.Y2) as a slowly drifting
histogram, so the changes to P(YlY2) gradually become felt later on in the simulation.
This does not mean that we effectively take P(Y1 ,Y2) variations into account in a "mean
field" simulation, because when the "mean field" simulation reaches equilibrium so that
the drift of P(YlY2) vanishes, the "local field" gradient of P(y I,Y2) does not vanish.

1
4
hdomully we CM kieee this ounpeskO en MWtnt So ttel"Iits see Mt enmtinlomelon 1Li_7 2) wsm Yl WA Y2iti

ILl;7lJ2HlYl"Hy/l-HI5J 2 W-O, be Ht.Iis Ud -mpiy o m md mcams s HIyI Ml HL,21
whereas squeaei% cames Xty I J21 I decrease. hence I, l42 1 wds to inrmss, •lhoush tis, is is websoleoty Persieed u
infonnmion cm be used es o buic oplinisatimu cnwen kwed f I dissenion einmiruim. An eamuple de ise, i dS its
reMlationsip so die optimistieon of * novel dus of hieoetical Gibs diurksio cn be fot in Ll tll.ll i I ,16t
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Y2

Yy x)
2 2

Figure 13. Migration of the PDF P(y,,y 2) due to the self-
supervision effect of the marginal PDFs P(Y11'Y,,Y 2) and
P(Y' 21y1,y2), which are the topographic neighbourhood functions
for optimnising the x, .-4 . j -4 xj' and X2 -4 .. Y2 -4 2

channels. Contributions to P(Y1 ,Y2) which lie inside the vertical
shaded band tend to migrate towrds the left, and contributions
inside the horizontal) band tend to move upwards. In all cases the
migration is in the direction in which the corresponding marginal
PDF is biased. Compare Figure 4.

7.1.4. Two-stage vector quantising

When we minimise D using the mean field procedure we obtain

(Y1(X,),y 2(X2))= 1 - ~ jrmndy ,P(Y11lYIY 2) Itx',(y')-X1112 + (1 2) (18)

fdX1 d12 P(X,.X2) P(Yktyl(z]I)Y2(12)) ;
X'k(Yk - dld2=XI2 (ky(II2X) (19a)

AXhk(yk) - E P(yYII),2(XZ)) (Xk.X'k(yk)) (19b)
which should be compared with Equation 11 and Equation 12. Note that Equation 18
specifies a minimum distortion prescription in which we simultaneously optimise y1(x,)
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and Y2(x2). using P(y'1yl,y 2) and P(Y'2 y1 ,y2) instead of tt(y'-y). We sometimes
approximate this by using a nearest neighbour prescription. Note that in [13] we
reported (in the case of scalar quantisation) that this approximation is forbidden if we
wish the density of code vectors to be insensitive to the choice Of P(Y'21yl,y2) and
P(y'1y1 ,y2).

Note that in [ 13] we reported (in the case of scalar quantisation) that the use of nearest
neighbour encoding is forbidden if we wish the density of code vectors to be insensitive
to the choice of P(Y'2Iy 1y2) and P(.Y', 1Y Y2).-

7.2. Analytically solvable quantisation model

In this section we present an analytically solvable model of the ensemble distortion
P(Y'1 ,Y',1Y1,y2) shown in Figure 4.

7.2.1. Code vector density

If the number of code vectors (yj1 (z),y' 2(z)) in the (Y1,y2) -4 Z -4 (y',,y'2) codebook is
very large, then we may calculate P(y',,y'21y1 ,y2) directly. Thus, we model the ensemble
properties of the codebook by defining P(yl,y 2), which specifies the density of code
Vectors (Y'1(Z),y' 2(Z)) in (Y,,Y 2)-space.

7.2.2. Transition probability: integral equation

Note that we use the notation p(y) (and P(y'Iy)) and P(YIy 2) (and P(Y'1 ,Y'1y1 ,y2))
interchangeably..

In Figure 14 we compare the nearest neighbour encoding prescription for a single VQ
with that for an ensemble of VQ's' 3 .
In Figure 14a we show an input vector (represented by a cross) and the known positions
of the code vectors of a single VQ. The nearest neighbour can be located by expanding a
circle centred on the input vector until it grazes the nearest code vector, as shown. In
Figure 14b we show the ensemble version of the same diagram, in which the precise
code vector positions are unknown, so there is a distribution P(yily) of possible nearest
neighbour locations. T'here is an analogous interpretation for the minimum distortion
encoding prescription.

Using Figure 14, we may write down an integral equation that relates P(yly) to p(y).
Thus

P(y'ly) sy' I -I fdt P(4ly))P(Y') By, (20)

15Forosteme we dismus hent the atemsedsate case where the psitions of the code vectors am partially known, The most
F- lat way of aciuiin partal knowledge is toote thelicsitiosof she meama neighbour codle vwon durinig taing. However.

such kfowledge must be continuously updated because iigition of the code vector positiona grahully ammos my uenoy of theif
aniae posilits. Partial knowledge lies between the extsam of Algure So utd Pleura *b and Ms analysis us very compitlicaedl. We
chums so sonyse the esrsoe cuas igulre Sb because it usderuassusse. rather tha overestimates, the kwledg about the
codervecion thot is available.
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where the first term on the right hand sde is the probability that ther ismo nms
neighbour code vector in the sphere of radius ly'-yl centred on y. and the waond term is
the probability of finding a code vector in the volume by' at y'. The product of then two
terms gives the probability of finding the nearest neighbour code vector in the volume
By' at y'.

• " • P(Y)

(a) (b)

Figure 14. (a) Determining the newemst neighbour code vector
position for a single vector quantiser. (b) Determining the PDF
P(yly) of the nearest neighbour code vector position from the
code vector density p(y) of an ensemble of vector quantisers.

7.2.3. Transition probability: constant code vector density case

We now solve Equation 20 for the case p(y)wpomconsuat. ie neamt neighbour code

vector is then equally likely to lie in any direction from y, so P(yvly) must be a function
only of the radial distance Ily'-yll, which gives

P(lly'-y,) : fd4 P(l1I-yll)) (21)

where 1.y'-ylJ (y'-y)T.(y'-y). D e integrand is spherically symmetric so we may use the

transformation

fd4 P(Ill-yll) = a fdthen I1e11r' P(nh c e) (pf2)

where aN is a constant deriving from the angular integration in N dimensions.
Differentiate Equation 21 with respect to the upper limit Ily -yll of the liit integration to

yield
dP(ily'-y i)dly'-yl) = UN PO (ly"Y ' ll .'-yl) (23)

and intrate to yield finally

P(Ify'-Y") = Po ex- apIN Iy'-yII ll (24)

where P i should be adjusted to ensure that P(Iyyll) is normaised inr .The N 2

case reduces to a Gaussian distribution with Ptol/(4X~po).

21

yield



7.2.4. Transition p obabllity: variable code vector density can

We now extend the previous results to the case

p(y) _ p(y) + (y'-y)T.Vp(y) (25)

which is a first order Taylor expansion of p(y) about the point y'=y. We anticipate that
the first order expansion of P(yly) has the form of Equation 24 with an extr factor to
account for the angular dependence in Equation 25

P(y'ly) - PO()) (1 + (y'.y)T.a(y)) CX X) (26)

where a(y) has to be determined. Differentiating Equation 20 with respect to y' leads to

aP(Y1) =-(, fd4P(Iy) P(y+)+ E .a (27)
aY, P(Y a y,'''-" )

where we used Equation 20 to replace a term by a P(yly)/p(y') factor. We may now
insert the expressions for p(.y') (Equation 25) and P(.y'ly) (Equation 26) into Equation 27.
and make use of the results

~, =~P 0(y) (1 + (y'-y).a(y)) N)

- P0(y) (a(y)-ctN p(y) lly'.yll' 2(y'y)(I+(y'-y)T.a(y)))

Nx p() (Y y'yl''  (28)

which we obtain by using a/ay'Ily ylf'=NIly' ylIl 2(y y),

f P(4,Iy)

y -yl fdS P(Iy)

1Po (Y1a Ily'.yI Y '.)el{ l~I )(9

which we obtain by using Equation 22 to perform the angular integration over the
surface Il4-1Ily'-yll, and noting that the term containing (y-y)T.a(y) vanishes after angular
integration,

ay Vp(y') (30)

to obtain

a(y) - P(Y) Iy'-ylIN'2(y'y)(l +(y')T.a(y)) f

-o p(Y') IIy'-yIl''Z(y'-y) + (I +(Y'-Y)T.a(y)) p(y) (31)
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We then use p(y (y)(l+(y'-y)T.Vp(y)/p(y)) and Vp(yYp(y')-Vp(y)/p(y) to simplify
Equation 31 into the form

(.(Y) - 1 -, P(y) lly',yflN-Z (y'-y) (y'-y)T. (.Y). (32)

where we have dropped the next-to-leading order terms. We may solve Equation 32 by
choosing a(y)=Vp(y)/p(y). to obtain the generalisation of Equation 24 as

P(y'ly) - P0(Y) I (1 Y)T P(Y) (C4OPI (YU yN ) (33)+ p(.v> Ne

Strictly speaking, Equation 33 does not specify a valid probability distribution because it
yields a negative probability when (y'.y)T.Vp(y)/p(y) < -1. However, this result is the
leading order term in a Taylor expansion about y-y (see Equation 25), therefore we
implicitly assume ll(y'-y)T.Vp(y)/p(y)ll , . The effect of the l+(y'-y)T.Vp(y)/p(y) term
is to relocate the maximum of P(y'y) from its original position at y-y (see Equation 24)
to a new position given by

1N-1 II1VP(Y)II VP(y) (4
Y' Y+ C 4CNp(y) 2 J IVp(y) (34)

The direction of shift is consistent with the bias in P(y'y) that we show in Figure 4 and
Figure 13.

Finally, we marginalise the joint distribution P(y,',y2 "'y,,y2) in Equation 33 in order to
calculate P(y1 'y 1 ,y2) and P(y2 'fy1 ,y 2) (which we need in Equation 18 and Equation 19).
For the 2-dimensional case (N=2, %z=2nt, (y,,y2)--(yI,y2)) this is easy because the
exponential factors are Gaussians, leading to the result

P(Y1 'IylY2 ) = P0(y1,y 2 ) 1 + -, exp(- t p(YY 2) (y1 '"y1 )2) (35)
P(yp y 2 ) y1  

) 7

with an analogous result for P(y2'1y1,y2). These results may be used to model the
marginals in Figure 4.

Recall that P(y'1y1,y2) and P(y2'1y1,y2) serve as topographic neighbourhood functions for
optimising the x, -+ y* .. Y,' -+ X,' and x2 -+ Y2 .. Y2' -+ X2' transformations. In the
ensemble average model, these neighbourhood functions emerge naturally from the
ensemble properties of (Y1,Y2) -+ Z -+ (Y'I,Y' 2), so we do not need to supply them
manually.

The automatic generation by one part of a network of the topographic neighbourhood
function required by another part of the same network is sufficiently novel and important
that we call it self-supervision. It is an effect that lies halfway between full supervised
training with an external teacher, and unsupervised training. It is an economical way of
extending the capabilities of an unsupervised network towards those of a supervised
network' 6.

16 1ef-sopmvimd nsswoj ate ouable to prodo.. the o m Uiud by m uziamul tader oema 6= is to m). ll theY
em do is to supmivts theif leunaI oppution. ba rut tht d t r oupsu yw.
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7.3. Estimating the code vector density

In order to determine the result for P(yly) in Equation 33 we must estimate p(y) and

Vp(y) in Equation 33. We may use the asymptotic relationship'"

p(y) - P(y)NI ' (36)

or

VP(y) N VP(y) (37)
p(y) N+2 P(y)

to express our results either in terms of P(y) or p(y).

If we record P(y) as a histogram of frequencies of occurrence of input vectors y, then we
may directly estimate VP(y)/P(y), and thence estimate Vp(y)/p(y)s. We may also make
a crude estimate of Vp(y)/p(y) from a single realisation of the code vectors.

7.3.1. Estimation from the histograms

We will now describe how to estimate P(y) and VP(y) from a histogram. Denote the
transformation from continuous to discrete variables as

k(y1) E n Wy a B' (38)*YiSX yi2 in + 8 )

where yi,, and yinm1 are the minimum and maximum values that yi can possibly take, B
is the number of bins in each dimension of the multidimensional histogram, and 8 is a
small positive number that we introduce to ensure that 0<k*(yi)<B (i.e. a strict inequality
at the upper end of the range). Thus the full vector index required to locate a bin in the
multidimensional histogram

k(y) = (k,(y1),k,(y)....k,(y,)) (39)
which we then update using

r(k(y)) -4 r(k(y))+l (40)

It is important that the histogram should also have a finite memory time in order that it
can track a time dependent P(y). This is easily arranged by making the histogram bins
leaky. For instance, the number of counts in each bin could be a real number (not an
integer), all of which simultaneously decay (before r(k(y)) is updated) according to the
prescription

r(k) -+ P r(k) (41)

where 0<0<1. The overall update process would then be described by

r(k;t+1) = 03 r(k;t) + v(k;t) (42)

17Str * •S gay ig, hNS is tre oJy for m nimm dua tim uc" in.

I 8We could also Subsitute i f"histagsrn "uy other met"d o eststi, a desity. Such a a "Won diruibsaoss.
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where v(k;t) is a multivariate Poisson process which derives from the hits on the array of
histogram bins. The "memory time" of this type of process is I/(I-P) time steps, so 0 can
readily be used to control the ability of the histogram to track a time dependent P(y).

A less computationally intensive prescription for histogram decay would be to use
Equation 42 to decay the histogram bins only occasionally. For instance, if we decay
r(k)-r(k)/e after every l/(I-P) time steps, then we crudely emulate the effect of
Equation 42 applied at every single time step9. This leads to quite acceptable results,
and it is the procedure that we adopt in our numerical simulations.

7.3.2. Estimation from the code vector positions

For completeness, we shall now describe how to make a crude estimate of p(y) and
Vp(y) from a single realisation of the code vectors, although we do not make use of this
prescription in our numerical simulations. We may obtain the required estimate by
measuring the zeroth and first moments (Mo(y,R) and Ml(y,R) respectively) of the code
vector positions within a sphere II-yll < R. The definition of these moments is

Mo(yR) - Sdk p(4) M.n(Y,R) =: fd4 p(t) ( -y) (43)

lit+yJ.+R R.y,.a

whereas the estimate of these moments is

Mo(y,R)= a 11My,) 14) (44)

Combining Equation 43 and Equation 44, and inserting the expression in Equation 25
yields

NN(N+2) ( Y (45)
N "l Vp(y) = RN+2O(Y) = LN R', _c 14y)(5

N i-yI~SR N N+ J1t-Y11R

whence Vp(y)/p(y) is given by

Vp(y) N+2 l = (N+2)<-Y> 1 ,.,,< (46)
p(y) RN 71 RN

Ilt.yllaR

where <...> denotes an average over code vectors.

The optimum choice of R is a tradeoff. If R is too small then there are too few code
vectors in the sphere IIt-yll < R to allow a good estimate to be made in Equation 44. If R
is too big then we invalidate the assumption that we may ignore the higher order terms
(e.g. curvature) in the Taylor expansion in Equation 25. Between these two extremes will
lie an optimum choice of R, whose value can be determined by experiment.

19This cm easily be checked as follows "( ) el - - I.)JI-)ep(- t)=i/e
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